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Uncertainties in the Assessment of COVID-19
Risk: A Study of People’s Exposure to High-Risk
Environments Using Individual-Level Activity Data

Jianwei Huang
�

and Mei-Po Kwan
�,†

�
Institute of Space and Earth Information Science, The Chinese University of Hong Kong, China

†Department of Geography and Resource Management, The Chinese University of Hong Kong, China

Based on different conceptualizations and measures of individual-level environmental exposure, this study

examines how the uncertain geographic context problem (UGCoP) and the neighborhood effect averaging

problem (NEAP) might affect the assessment of COVID-19 risk. Using the COVID-19 data on an open-

access government Web site and the individual-level activity data of sixty confirmed COVID-19 cases

(infected persons) in Hong Kong, we first represent COVID-19 risk environments using case-based and

venues-based high-risk locations. The COVID-19 risk of each of the sixty selected cases is then evaluated by

three approaches based on their exposures to the case-based or venues-based risk environments: the

mobility-based approach, the residence-based approach, and the activity space–based approach. The results

indicate that the UGCoP and the NEAP exist in the assessment of COVID-19 risk, which has significant

implications: Ecological COVID-19 studies need to address the uncertainties due to the UGCoP and the

NEAP by considering people’s daily mobility. Otherwise, ignoring peoples’ daily mobility and its interactions

with complex and dynamic COVID-19 risk environments could lead to misleading results and misinform

government nonpharmaceutical intervention measures. Key Words: COVID-19, environmental exposure,
neighborhood effect averaging problem, individual-level health risk analysis, uncertain geographic context problem.

T
he COVID-19 pandemic has been the most
serious threat to global public health in more

than 100 years, with more than 126.3 million
confirmed cases and 2.7 million confirmed deaths

worldwide by early May 2021 (World Health
Organization 2021). The pandemic has led scholars
to investigate the environment’s role in the inci-

dence and mortality of the disease (e.g., Hamidi,
Sabouri, and Ewing 2020; Huang et al. 2020; Kan

et al. 2021; Kwok et al. 2021). Numerous studies
have linked the incidence or mortality of COVID-
19 to specific physical and social environmental con-

texts using public COVID-19 and environmental
data that are spatially aggregated to fixed administra-
tive units (e.g., counties or census tracts; Coccia

2020; Das et al. 2020; Desjardins, Hohl, and
Delmelle 2020; Kodera, Rashed, and Hirata 2020;

Tian et al. 2020). Using aggregated space–time data,
however, is susceptible to the modifiable spatiotem-
poral unit problem (Cheng and Adepeju 2014;

Kwan 2018a), which means that research findings
from ecological studies might be different due to the

use of areal units of different spatial scales (e.g.,
counties or census tracts) and different temporal

scales (e.g., weeks or months). For instance, Huang
et al. (2020) and Amram et al. (2020) concluded

that urban density is an important factor affecting
the spatial incidence rate of COVID-19 in Hong

Kong and Washington State (United States), and
Hamidi, Sabouri, and Ewing (2020) found that met-
ropolitan size plays a more important role than

urban density in the COVID-19 transmission in the
United States. The differences in these results might

be due to the use of areal units of different spatial
scales: The former two studies used ZIP code
(Washington State) and Tertiary Planning Unit

(Hong Kong) level data, whereas Hamidi, Sabouri,
and Ewing (2020) used county-level data.

To address the modifiable spatiotemporal unit

problem in ecological COVID-19 studies, Helbich,
Browning, and Kwan (2021) recently urged research-

ers to apply retrospective case–control and conduct
high-resolution, individual-centered studies to inves-
tigate the environmental determinants of disease

transmission based on registered residential address
data and location tracking technologies. As the

authors argued, one of the critical tasks for these
studies is to accurately assess how and to what
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extent infected people were exposed to the coronavi-

rus and various environmental factors or contexts in

their recent daily life. Assessment of environmental

exposure in most studies on health–environment

relationships to date, however, tends to use conven-

tional delineations of people’s residential neighbor-

hoods (Kwan 2013). These studies tend to link

people’s health to their residential contexts, assum-

ing that the residential neighborhood is the most

relevant area affecting people’s health (Kwan

2018a). For example, studies have found that air pol-

lution (Fattorini and Regoli 2020; Wu et al. 2020;

Yu et al. 2021), sociodemographics (Y. Xiong et al.

2020), neighborhood disadvantage (Durfey et al.

2019; Alkhamis et al. 2020), temperature (Azuma

et al. 2020), and the food environment (Holsten

2009) are associated with different health outcomes

(e.g., spatial incidence and mortality of COVID-19,

obesity, and chronic diseases) using data based on

people’s residential neighborhoods.
Although previous studies provide a useful foun-

dation for understanding the possible causal path-

ways through which environmental context might

affect health, their conclusions could be misleading

due to methodological issues. Because most people

travel to areas outside of their residential neighbor-

hoods in their daily lives for various activities, they

are exposed to different neighborhood contexts

(Kwan 2012). Hence, ignoring people’s daily mobil-

ity in environmental exposure assessment could lead

to unreliable results (Park and Kwan 2017; Kim and

Kwan 2019). Among these methodological issues is

the uncertain geographic context problem (UGCoP),

which stresses that inferences about the effects of

environmental exposure on people’s health outcomes

might be different due to how contextual areas

are geographically delineated (Kwan 2012; Kwan

et al. 2019).
To address the UGCoP, recent studies have inves-

tigated the effects of environmental exposure (e.g.,

air pollution, green space, and the food environ-

ment) on health outcomes based on fine-grained

mobility and environmental data (Zhang et al. 2018;

Zhao et al. 2018; Kou, Kwan, and Chai 2020; J. Ma

et al. 2020). A particular phenomenon has been

observed in these studies: People’s mobility-based

environmental exposures tend to converge to the

average exposure value in the study area. This phe-

nomenon has been articulated as the neighborhood
effect averaging problem (NEAP), which suggests that

residence-based exposure assessments might underes-

timate or overestimate people’s environmental expo-

sure if it overlooks human daily mobility (Kwan

2018b; Kim and Kwan 2021a, 2021b, 2021c).

Specifically, people who have higher residence-based

exposures might have lower mobility-based exposures

and vice versa, and the distribution of mobility-based

exposures would deviate less from the mean than

that of residence-based exposures. The NEAP has

been regarded as “an elusive confounder of the

neighborhood effect” (Kwan 2018b, 1). Further, the

NEAP not only suggests that residence-based expo-

sures might be different from mobility-based expo-

sures but also identifies neighborhood effect

averaging as a specific source of the UGCoP that

leads to such differences (Kim and Kwan 2021b).

Recent studies have identified the impacts of the

NEAP on people’s exposure to air pollution, traffic

congestion, and different ethnic groups (Kim and

Kwan 2019, 2021a, 2021b; X. Ma et al. 2020; Tan,

Kwan, and Chen 2020). Very few studies to date,

however, have examined how the UGCoP and the

NEAP might influence the results of ecological

COVID-19 studies when human mobility is

not considered.
It is well known that the spread of infectious dis-

ease is influenced by human mobility and people’s

interactions in space and time (Viboud et al. 2006;

Stoddard et al. 2009; Bian et al. 2012; Wesolowski

et al. 2012; Lai et al. 2019; Li et al. 2019). As they

move around to undertake their daily activities, sus-

ceptible individuals could be infected via direct con-

tact with infected individuals. Overlapped activity

spaces of individuals can thus contribute to the

spread of infectious disease. For instance, infected

individuals might leave the virus on certain surfaces

(e.g., door handles, elevator buttons, and tableware)

in the venues they visited or in which they stayed

(e.g., restaurants or hotels). Contacting or touching

these surfaces greatly increases the infection risk of

susceptible individuals. Further, an infectious disease

can spread through people’s movements via the pub-

lic transportation system and social interactions. In

the case of COVID-19, transmission occurs mainly

through people’s face-to-face interactions via respira-

tory droplets produced by an infected person’s mouth

or nose when they cough, sneeze, speak, sing, or

breathe heavily. Hence, people could catch COVID-

19 if they have been in close contact with an

infected person in specific locations (e.g.,

Uncertainties in the Assessment of COVID-19 Risk 969



restaurants, bars, fitness facilities, and workplaces;

Chang et al. 2021; Harapan et al. 2020). Thus, in

this study, we conceptualize COVID-19 risk as the

likelihood of a person contracting COVID-19

through contacts with infected individuals based on

the notion of environmental exposure. In this

framework, an individual with a higher COVID-19

risk means that the individual has a higher level of

exposure to infected people or venues visited by

infected people and thus will have a higher likeli-

hood of contracting COVID-19. The individual is

considered more vulnerable in the pandemic, and

areas with higher concentrations of infected people

or venues visited by infected people are high-

risk locations.
Further, as recent studies have found, people’s

COVID-19 risk has a positive association with the

duration and frequency of their exposure to high-risk

locations. For instance, Baker, Peckham, and Seixas

(2020) and St-Denis (2020) assessed the COVID-19

risk of workers with different occupations and socio-

economic characteristics based on how frequently

these workers are exposed to infections in various

types of workplaces in the United States and

Canada. These studies found that workers with high-

risk occupations (e.g., health care–related and low-

income occupations) are more frequently exposed to

COVID-19 risk in their workplaces and have signifi-

cantly higher average risks of exposure than other

occupational groups. Similarly, people with certain

high-risk behaviors or activity patterns (e.g., fre-

quently visiting high-risk venues like bars or fitness

facilities) also tend to have a higher risk of exposure

than other groups. Thus, venues recently visited by

confirmed cases (i.e., where transmission of COVID-

19 might occur) are venues with a high risk of

COVID-19 transmission for a certain period, and

people’s exposure to these venues in their daily lives

can be used to evaluate their COVID-19 risk.

Previous studies have used individual-based and

spatially explicit epidemiological frameworks to eval-

uate individual risk to infectious diseases. For

instance, Bian (2004) and Bian et al. (2012) used an

individual-based simulation approach that incorpo-

rates four important considerations: individuals are

different, individuals interact with each other

locally, individuals are mobile, and the environment

for individuals is heterogeneous. Wesolowski et al.

(2012) used spatially explicit mobile phone data to

identify the movement patterns and travel networks

of infected persons who drive the spread of malaria

in Kenya. These studies focused mainly on examin-

ing how human mobility affects the spread of infec-

tious diseases. Since the onset of the COVID-19

pandemic, many studies have used mobile phone

data to examine how nonpharmaceutical control

measures (e.g., travel restrictions and stay-at-home

orders) affect human mobility and the effectiveness

of these measures in mitigating the spread of

COVID-19 (e.g., Badr et al. 2020; Gao et al. 2020;

Kraemer et al. 2020; Pullano et al. 2020; C. Xiong

et al. 2020; Chang et al. 2021; Kim and Kwan

2021c; Lee, Qian, and Schwanen 2021; Willberg

et al. 2021). In general, these studies observed that

nonpharmaceutical control measures tend to reduce

people’s mobility and are effective in mitigating the

spread of COVID-19. There are considerable dispar-

ities, however, between different social groups (with

respect to income, race, ethnicity, and class) in their

mobility change and ability to limit exposure to

infected persons and high-risk places. For instance,

Chang et al. (2021) observed higher infection rates

among disadvantaged racial and socioeconomic

groups because members of these groups cannot con-

siderably reduce their mobility and the places and

venues they visit are more crowded and riskier. Kim

and Kwan (2021c) found that, perhaps due to quar-

antine fatigue, restricting people’s mobility to con-

trol the pandemic is effective only for a short period,

and low-income people keep traveling during the

COVID-19 pandemic because they are mostly essen-

tial workers who are required to be physically pre-

sent at their workplaces.
Although these studies represent significant

advances in the study of individual risk of contract-

ing infectious diseases, including COVID-19, they

did not examine how different methods for assessing

individual exposure risk might affect the results due

to the UGCoP and the NEAP (i.e., contextual

uncertainties), which were discovered in recent

years. Specifically, they did not compare risk levels

based on residence-based assessments with those

obtained using mobility-based assessments. Thus, the

goal of this article is to provide a methodological

investigation of the UGCoP and the NEAP when

assessing individual COVID-19 exposure risk.

Further, although the UGCoP and NEAP are now

established concepts, the limited number of studies

on the NEAP to date have examined it only in indi-

vidual exposure to air pollution, traffic congestion,
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and ethnic groups. As a result, we currently have

very limited knowledge about whether other kinds

of exposures would face the NEAP and what social

groups are most affected in those situations (Kim

and Kwan 2021b). Thus, more empirical evidence

is needed to expand our knowledge on how the

NEAP might affect the experiences of different

social groups for other kinds of environmental

exposures and what mechanisms underly those

exposures. The study thus seeks to increase our

empirical knowledge about the NEAP (in addition

to the UGCoP).

This article thus seeks to bridge this significant

knowledge gap by examining how contextual uncer-

tainties due to the UGCoP and the NEAP might

affect the assessment of COVID-19 risk using three

approaches: (1) a mobility-based approach, (2) a

residence-based approach, and (3) an activity

space–based approach. Specifically, we use the indi-

vidual-level activity data of sixty infected persons in

Hong Kong and different measures based on the

three approaches to assess people’s COVID-19 risk,

which in turn is based on people’s exposure to two

types of high-risk locations: case-based high-risk

locations (CHLs) and venues-based high-risk loca-

tions (VHLs). We compare the risk levels obtained

with different combinations of the COVID-19 risk

measures and high-risk locations. The results indi-

cate that the UGCoP and the NEAP exist in the

assessment of COVID-19 risk, which has significant

implications for the ecological study of COVID-19

and other infectious diseases. Finally, we use regres-

sion models to evaluate the associations between the

CHL-based and VHL-based COVID-19 risk obtained

with different risk measures based on the three

approaches. The results reveal the highest associa-

tion between CHL-based and VHL-based COVID-

19 risk when using the mobility-based approach,

which suggests that using a mobility-based approach

to assess people’s COVID-19 risk can generate more

reliable results when compared to other methods.

The results imply that ecological studies of COVID-

19 and other infectious diseases need to address the

uncertainties due to the UGCoP and the NEAP by

considering peoples’ daily mobility. The study ad-

vances our understanding of how the UGCoP and

the NEAP might affect the assessment of individual-

based exposure risk to COVID-19 and other

infectious diseases based on an environmental expo-

sure framework.

Data and Method

This study seeks to examine the uncertainties in

the assessment of COVID-19 risk. We first compile

the individual-level activity data and construct the

space–time trajectories of sixty selected infected per-

sons. Second, the COVID-19 risk environments are

represented based on CHLs and VHLs using kernel

density surfaces, space–time cubes, and space–time

kernel density estimation (STKDE). Third, six

widely used activity space methods are applied to

delineate the exposure spaces of the sixty infected

persons. Then, three approaches are used to assess

their COVID-19 risk. Finally, we examine the effects

of the UGCoP and the NEAP on the assessments of

COVID-19 risk. These methods and analytical tasks

are described in detail in this section, and the results

obtained are reported later.

Data Collection and Preprocessing

The study area for this research is Hong Kong,

where the government conducts careful contact trac-

ing of all confirmed COVID-19 cases and provides

much of this information via an open-access Web

site (this information is readily available to other

researchers for replicating the study). Such detailed

information allows us to examine COVID-19 risk at

a high spatial and temporal resolution (e.g., at the

building and venue level) that few other study areas

can offer. The individual-level activity data of the

infected persons used in this study cover the period

from 27 January to 14 April 2020 (i.e., the first and

second waves of the COVID-19 pandemic in Hong

Kong). They came from two public sources: the

Hong Kong Department of Health and online news

articles. Table 1 shows the data items in the data

set. These items include the case number, activity

location (i.e., geographic coordinates), type of build-

ings visited, visit date, activity type, the start time of

the activity, the end time of the activity, and the

duration of the activity. Note that the publicly avail-

able data set from the government does not contain

any information that reveals the identity of the

infected persons. To protect personal privacy, the

data were deidentified by the government by replac-

ing the names of the infected persons with a case

number (e.g., 1, 2, 3 … ). Although the names of

the residential buildings in which the infected per-

sons live are disclosed in the data, these building

Uncertainties in the Assessment of COVID-19 Risk 971



names do not allow the reidentification of the

infected persons in any straightforward manner

because all of the residential buildings involved are

multistory or high-rise structures with many resi-

dents. Despite the deidentified nature of the data,

we have adhered to human subjects protection

guidelines when conducting this research and prepar-

ing the article. Also, the institutional review board

of the authors’ university does not require ethics

review or approval for the project because the data

set is publicly available. The steps used to construct

the data set are described as follows.
We first downloaded the activity data of the

infected persons reported from 27 January to 14

April 2020 from the Hong Kong government’s open-

data Web site, which provides the data freely (see

https://data.gov.hk). The data include 419 local cases

and 591 imported cases. The imported cases are

excluded from this study because these cases were

infected before they entered Hong Kong and we

cannot assess the many factors in the source coun-

tries or cities that had influenced the COVID-19

risk relevant to them. The data of the local cases

contain the following information: the number of

confirmed cases, some demographic data for each

case (e.g., age and gender), the name of the build-

ings visited (without detailed activity information)

by the cases during the incubation period (i.e., their

visits to these venues in the past fourteen days

before they were confirmed to be infected), and the

name of the building in which they live. Note that

the data only contain the names of the buildings vis-

ited without geographic coordinates. Hence, the geo-

graphic coordinates of each building visited by the

confirmed cases are obtained by using the Google

Place application programming interface (API).

These buildings visited by infected persons (i.e., all

local cases) were used to represent one of the high-

risk environments in the study: CHLs (i.e., locations

with high COVID-19 risk due to visits by people

who were later confirmed to be infected).
Second, because local online media frequently

reported the details of new COVID-19 cases in

Hong Kong, news articles from these sources were

used in the study to enrich the data obtained from

the government’s open-data Web site. These sources

include South China Morning Post (see www.scmp.

com), Mingpao (see news.mingpao.com), Hong

Kong 01 (see www.hk01.com), and Radio Television

Hong Kong (see news.rthk.hk). Using and cross-

checking the information in these articles, we

derived the activity locations, activity types (e.g.,

shopping, dining, or working), activity durations,

and other attributes of the confirmed cases. For

example, the data from the Hong Kong govern-

ment’s open-data Web site indicate which buildings

were visited by Case 1, and the news articles further

disclose when and what kind of activities the case

had undertaken in the building. The duration each

confirmed case stayed at specific locations can thus

be roughly estimated based on the types of activities

undertaken. Note that although there is some uncer-

tainty in these activity duration estimates, we can

still use these data for a methodological investigation

because the study compares the individual-based risk

levels obtained by different exposure measures based

on the same COVID-19 risk environment. The dif-

ferences in the results among these measures are

unlikely to be significantly affected because such dif-

ferences are influenced more by how different mea-

sures represent or capture the risk environment than

by the estimation errors in the activity durations,

given the same risk environment. The same can also

be said concerning how the results might be affected

by how busy different high-risk venues are.

Although proxy measures (e.g., the square footage of

high-risk venues) can be used to estimate how busy

they are, the differences in the results among the

exposure measures are unlikely to be significantly

affected because such differences are influenced more

by how different measures represent or capture the

risk environment than by how busy the venues are,

given the same risk environment.

Using these two public data sources, we construct

an activity data set of sixty infected persons (14.3

percent of the total local cases in Hong Kong during

Table 1. Examples of an infected person’s activities

Case no. Visited date Start time End time Building type Duration Activity Report date x y

1 13/3/2020 9:00 18:00 Office 540minutes Work 20/3/2020 828,665.46 838,395.21

1 13/3/2020 19:00 20:30 Commercial 90minutes Dinner 20/3/2020 815,836.27 834,010.28

1 13/3/2020 20:50 21:30 Bar 40 minutess Entertainment 20/3/2020 815,913.55 833,856.76
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the study period), with an average age of thirty-eight

years (with a range of nineteen to sixty-nine years),

including twenty-four women and thirty-six men.

The data set includes all reported superspreaders

(i.e., infected persons suspected to have infected

many others through their activities at different ven-

ues), who caused 80 percent of all local cases in

Hong Kong during the study period (Adam et al.

2020). Note that only the confirmed infected per-

sons were admitted to hospitals for isolation and

treatment in Hong Kong during the study period;

people who had been in close contact with infected

persons could still conduct their daily activities in

various locations before they were confirmed as new

cases. Further, the sixty selected cases are representa-

tive of the local cases during the study period in

terms of their spatiotemporal distributions (Figure 1

and Figure 2A). Thus, we use the activity data of

the sixty selected infected persons before they were

confirmed as new cases for methodological investiga-

tion (i.e., uncertainties in the assessment of

COVID-19 risk) in the study. Specifically, exposures

of the sixty selected persons to the CHLs are used to

assess people’s exposures to COVID-19 risk.

In addition to the case-based high-risk environ-

ment, we use the data of all bars and restaurants in

Hong Kong to represent another high-risk

environment for assessing people’s exposures to

COVID-19 risk: the VHLs (i.e., locations with high

COVID-19 risk due to the risky social gatherings

and interactions that often occur there). These data

were collected from the OpenRice Web site (see

https://www.openrice.com/) and are used to represent

the spatial distribution of the high-risk venues of

social gathering (Figure 2B). OpenRice is the most

popular open-dining application in Hong Kong, pro-

viding the public with comprehensive dining infor-

mation (e.g., location of restaurants or bars, opening

hours, etc.). A Python program was developed and

implemented to crawl the OpenRice data. There are

26,703 records in total (i.e., 885 bars and 25,818 res-

taurants) after data clearing and preprocessing (e.g.,

removal of takeout bakeries and closed stores). Each

record includes the store name, location (i.e., lati-

tude and longitude), type (e.g., tea restaurant, BBQ

restaurant, or bar), and opening hours. We chose

bars and restaurants to represent the VHLs because

they were the venues with the highest COVID-19

risk during the study period (i.e., 27 January to 14

April) in Hong Kong according to the government’s

daily press briefings.

Case-Based and Venues-Based High-Risk Locations

As previously described, we use two types of high-

risk locations to assess people’s exposure to COVID-

19 risk in this study. We call the 1,075 activity loca-

tions visited by all local cases (including the sixty

selected cases) before they were confirmed as new

cases the CHLs. These high-risk locations include

various types of establishments, such as hair salons,

schools, grocery stores, religious establishments, bars,

and restaurants. On the other hand, the 26,703 bars

and restaurants are called VHLs. These locations are

venue based because the high COVID-19 risk at

these locations is largely the result of their charac-

teristic as popular venues of social gatherings. Note

that 637 of the CHLs have geographic coordinates

similar to those of some of the bars and restaurants

among the VHLs, because they might be located in

the same buildings (e.g., a building might have a fit-

ness room visited by people who were later con-

firmed to be infected on the seventh floor and have

bars and restaurants on the third floor). Further,

some of the VHLs had been visited by people who

were later confirmed to be infected and thus are also

CHLs (i.e., 217 locations are both CHLs and

VHLs). This suggests that assessments of people’s

exposure to COVID-19 risk based on the CHLs or

VHLs should have a strong correlation.

We represent the space–time distributions of the

CHLs and VHLs using three methods: the KDE

method, the space–time cube method, and the

space–time kernel density estimation (STKDE)

method. First, the spatial distributions of the CHLs

Figure 1. The temporal distribution of the COVID-19 cases in

Hong Kong from 27 January to 14 April 2020.
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or VHLs are represented by density surfaces derived

using KDE, which generates a density surface from

the locations of a set of points using a kernel func-

tion and a predetermined search radius (i.e., band-

width). Kernel density surfaces take into account the

decreasing effect of a location on nearby locations as

distance increases from that location (i.e., distance

decay) and have been widely used in environmental

health studies (Thornton, Pearce, and Kavanagh

2011; Shi et al. 2019). In the context of this study,

locations farther from a high-risk location (CHL or

VHL) are less influenced by that high-risk location

than nearer locations are. Hence, KDE is applied to

represent the spatial distribution of the CHLs and

VHLs (Figures 3A, 3B). In addition, most people in

Hong Kong are willing to walk for a distance of

3 km or less during normal times, but mobility in the

city has decreased more than 50 percent since the

end of January 2020 (Hung, Manandhar, and

Ranasinghege 2010; Google LLC 2020). We thus

used 1 km as the search radius and 100m� 100 m as

the spatial resolution in the KDE.

Figure 2. The spatial distribution of the selected confirmed cases and high-risk venues: (A) The spatial distribution of the activity

locations of the sixty selected confirmed cases. (B) The spatial distribution of bars and restaurants in Hong Kong.

Figure 3. Methods for representing the VHL and CHL environments: (A) The VHL environment; (B) the CHL environment; (C) the

VHL cube; (D) the CHL cube. VHL ¼ venues-based high-risk location; CHL ¼ case-based high-risk location.
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Second, the space–time cube method is applied to

represent the spatiotemporal distribution of the
CHLs and VHLs. Note that the risk-related charac-
teristics of the CHLs and VHLs change across space
and time. For instance, bars and restaurants (the

VHLs) might operate on specific schedules and offer
their services only during certain hours. Meanwhile,
the coronavirus can survive on different environ-

mental surfaces outside of its host organisms with
the effect of time decay, which means that the con-
centration of coronavirus outside of its host organ-

isms will decrease over time (van Doremalen et al.
2020). Thus, the space–time cube, which is consti-
tuted by a collection of 3D voxels in a regular grid

in 3D space, can be used to capture the complex
dynamics of the CHLs and VHLs (J. Wang and
Kwan 2018). The value of each voxel represents
the density of the CHLs or VHLs at a specific geo-

graphic location (x- and y-coordinates) and at a
specific time (z-coordinate). To create the VHL
space–time cube, the KDE method is first applied

based on the number of the VHLs that operate
during each of the twenty-four time slots of a day.
The twenty-four raster VHL layers are then voxel-

ized with each layer representing one hour and
mapped to the z-axis. Hence, a 3D space–time
cube is constructed to represent the VHL environ-

ment in Hong Kong during the study period
(Figure 3C). Note that the government decided to
close all bars from 2 April to control the spread of
COVID-19. Thus, the VHL space–time cube was

constructed to represent its environment before
2 April.

Third, the STKDE method is used to generate the

CHL space–time cube (Figure 3D). As mentioned
previously, the concentration of coronaviruses on
different environmental surfaces decreases over time.

Thus, the CHL space–time cube should consider the
decay effects of distance and time. The STKDE
method developed by Brunsdon et al. (2007) multi-
plies a bivariate kernel placed over the x–y (spatial)

domain by a univariate kernel along the temporal
dimension z to estimate the density of an event
while taking into account the decay effects of dis-

tance and time. It is formulated as shown here:

f̂ x, y, tð Þ ¼ 1

nh2s ht

Xn
i¼1

I di < hs, ti < htð Þ

Ks
x�xi
hs

,
y�yi
hs

� �
Kt

t�ti
ht

� �
,

(1)

where f̂ x, y, tð Þ is the estimated density at location

x, y, tð Þ, n is the number of points, di and dt are the

spatial and temporal distance between any point i
and the location x, y, tð Þ, and hs and ht are the spa-

tial and temporal search radius (i.e., bandwidth). In

this study, the kernel functions Ks and Kt are defined

using the Epanecknikov kernel (Epanechnikov

1969), which is a common type of kernel function

used in ArcGIS (Nakaya and Yano 2010):

Ks u, vð Þ ¼
2

p
1� u2 þ v2ð Þð Þ u2 þ v2ð Þ<1,

0 otherwise

8<
: (2)

Kt wð Þ ¼
3

4
1� w2ð Þ w2<1,

0 otherwise:

8<
: (3)

In addition, the indicator function Iðdi < hs, ti < htÞ
takes on a value of one when di and dt are smaller

than the spatial and temporal search radius (i.e., hs
and ht); otherwise, its value is zero. Similar to the

KDE method mentioned earlier, the spatial search

radius is 1 km and the spatial resolution is

100m� 100 m. The temporal resolution is one hour

and the temporal search radius is three days (i.e.,

72 hours), because the coronavirus can survive on

some surfaces (e.g., plastic and stainless steel) up to

three days (van Doremalen et al. 2020). Note that

although previous studies have provided useful

information on STKDE calibration (e.g., Hohl

et al. 2016), these studies largely used STKDE to

detect significant space–time clusters of infectious

diseases. Their primary purpose is different from

ours: We used STKDE to represent the COVID-19

risk environment by considering the space–time

decay effect. Thus, the parameters we selected (i.e.,

search radius ¼ 1 km and search duration ¼
72 hours) is determined by the specific context

(i.e., people in Hong Kong are willing to walk for a

distance of 3 km but mobility in the city has

decreased more than 50 percent in the study period,

and the novel coronavirus can survive on some sur-

faces up to three days).

Constructing the Exposure Space of the Infected
Persons Based on Their Activity Data

To assess the COVID-19 risk and exposures of

the sixty infected persons to the CHLs and VHLs

during the study period, we construct their exposure

space based on their activity data. First, the
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space–time trajectory between each pair of subse-

quent activity locations of an infected person is con-

structed using the Google Maps Directions API

(Figure 4A). Note that because the activity data did

not include actual Global Positioning System (GPS)

trajectories of each infected person, the exact routes

traveled are unknown. Thus, we use the Google

Maps Directions API to estimate the shortest time

routes because its algorithm reflects on-ramps, one-

way streets, traffic conditions, the speed limits of dif-

ferent road segments, and so on (e.g., Kim and

Kwan 2019). Further, note that we do not have data

on how risky or busy different public transport

modes (i.e., bus, the Mass Transit Railway, or ferry)

are during the pandemic and thus assume that the

levels of COVID-19 risk of these travel modes are

the same. The government data of the COVID-19

cases in Hong Kong do not indicate that using pub-

lic transport (or undertaking activities in crowded

venues like shopping) is a high-risk activity.

Then, six widely used activity space methods

(Crawford et al. 2014; J. Wang, Kwan, and Chai

2018; Kwan et al. 2019) are implemented to delin-

eate the exposure spaces of the sixty infected

Figure 4. The exposure space of an infected person constructed by different methods: (A) The space–time trajectories and (B) the six

activity space methods used in the study.
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persons based on their activity locations and the

constructed space–time trajectories (Figure 4B).

These methods are 2D trajectory buffers (2DTBs),

standard deviation ellipses with one or two standard

deviation(s) (SDE1 and SDE2), minimum convex

polygons (MCPs), activity-location buffers (ALBs),

and home buffers (HBs). The 2DTBs are created by

a 200-m buffer along the infected persons’ trajecto-

ries. The SDEs represent the spatial distribution and

directional trends of an infected person’s activity

locations. The MCP is the smallest convex polygon

that contains all the activity locations of an

infected person. The ALB is a 500-m area around

each of the activity locations of an infected person.

The HB is a 1-km buffer area around an infected

person’s home location. Note that these different

delineations of individual activity spaces have their

respective strengths and weaknesses (e.g., the MCP

tends to include a considerable area that is actually

not in a person’s activity space). They are used in

this study largely for comparative purposes to exam-

ine which can best capture a person’s COVID-

19 risk.

Measuring People’s COVID-19 Risk Exposures

Using these delineated exposure spaces of the

sixty infected persons, we assess their COVID-19

risk based on their exposures to the CHLs or VHLs

using three approaches (see Table 2): the mobility-

based approach, the residence-based approach, and

the activity space–based approach. Thus, the

COVID-19 risk assessed by each of these three

approaches has two versions: One is based on the

CHLs and the other is based on the VHLs. Note

that the exposure measures used in the study are

based on the notion that an individual’s COVID-19

risk is heavily influenced by the duration and fre-

quency of his or her exposure to high-risk locations

(Baker, Peckham, and Seixas 2020; St-Denis 2020).

Equation 4 measures MEk
i , which is person i’s

mobility-based COVID-19 risk due to exposure to

the CHLs (i.e., MEC
i ) or VHLs (i.e., MEV

i ):

MEk
i ¼

XTei

t¼Tsi

Sk xt, yt, tð Þ, (4)

where Tsi and Tei denote the start and end time of

the activities of individual i. Sk is the risk density SC

or SV obtained from the CHL and VHL cubes, and

xt, yt, tð Þ is person i’s location at time t. Equation 5

measures REk
i , which is person i’s residence-based

risk due to exposure to the CHLs (i.e., REC
i ) or

VHLs (i.e., REV
i ):

REk
i ¼

XTei

t¼Tsi

Sk xr, yr, tð Þ, (5)

where xr, yrð Þ denotes person i’s residential location

reported in the collected activity data. Equation 6

measures ASEk
i , which is the person’s activity

space–based COVID-19 risk evaluated by the per-

son’s exposure to the CHLs (i.e., ASCi ) or VHLs

(i.e., ASVi ) in his or her activity space:

ASki ¼
X

Ck, (6)

where Ck is the sum of the values derived from the

KDEs of the CHL (CC) or VHL (CV) environment

within the activity space of individual i. In this

study, all six activity space methods described earlier

in the article are implemented to estimate ASki :
Thus, the ASki includes 2DTBski , SDE1ki , SDE2ki ,
ALBski , MCHk

i , and HBk
i : Again, note that the

COVID-19 risk assessed by each of these activity

space–based methods has two versions: One is based

on the CHLs and the other is based on the VHLs.

Further, we use the CHL-based measures to further

identify the existence of the UGCoP and the NEAP

in the assessments of COVID-19 risk, while using

the associations between CHL-based and VHL-based

COVID-19 risk measures to examine the effects of

the UGCoP and the NEAP on such assessments.

Table 2. The three approaches of COVID-19 risk measurements and the respective measures in the study

COVID-19 risk environment

Mobility-based

approach

Residence-based

approach Activity space–based approach

Case-based high-risk

locations
ME

C RE
C

AS
C
(i.e., 2DTBs

C
,MCH

C
,HBC, SDE1C, SDE2C, ALBs

C
)

Venues-based high-risk

locations

ME
V

RE
V

AS
V
(i.e., 2DTBs

V
,MCH

V
,HBV, SDE1V, SDE2V, ALBs

V
)
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Analytical Approach

After assessing people’s COVID-19 risk using

these three approaches, we further examine the

effects of the UGCoP and the NEAP on such assess-

ments. First, we compare the CHL-based measures

(i.e., MEc, REc, and ASc) to evaluate whether the

UGCoP exists. Note that the MEc and REc measures

are based on high-risk environments different from

that of the ASc: The MEc and REc measures are

based on the CHL space–time cube, whereas the

ASc measure is based on the KDEs of the CHLs. To

compare them for examining the UGCoP, we con-

vert each of these three assessed COVID-19 risk lev-

els to standardized scores (i.e., dividing each risk

level by the standard deviation of all risk levels

obtained with the same measure).
Further, the NEAP is examined by comparing the

MEC and REC measures based on three different

methods (Kim and Kwan 2021b): (1) using descrip-

tive statistics to examine whether there is a decrease

in the standard deviation of the MEC measure when

compared to the REC; (2) comparing the probability

distribution functions (PDFs) of the MEC and REC

to assess whether there is a tendency for the MEC to

converge to the average exposure value; and (3)

using scatterplots to explore the relationship

between the REC (i.e., x-axis values) and how much

the REC are higher or lower than the MEC (i.e.,

using REC-MEC as y-axis values). The scatterplots

are used to analyze whether persons with high REC

tend to experience lower MEC and whether individ-

uals with low REC tend to experience higher MEC:
As mentioned earlier, people’s COVID-19 risk

assessed based on the CHLs and VHLs should be

highly correlated. Hence, we use multivariate linear

regression models to examine the associations

between the CHL-based and VHL-based COVID-19

risk measures.

Results

Variations in COVID-19 Risk Levels Obtained
with Different Methods

In this subsection, we use the CHL-based meas-

ures to identify the existence of the UGCoP in the

assessment of COVID-19 risk. Figure 5 presents the

standardized risk measures for each of the sixty

infected persons. In Figure 5, the horizontal axis

indicates these persons, whereas the vertical axis

shows their COVID-19 risk levels obtained with dif-

ferent methods. Figure 5 shows that different meth-

ods give considerably different COVID-19 risks for

the same individual.

Bivariate correlation analysis is used to investigate

the relationships among all COVID-19 risks assessed

based on the CHLs. Table 3 presents the results: More

than half of the pairs do not have significant correla-

tions, including the pairs of MEC–2DTBsC,
MEC–SDE1C, MEC–SDE2C, MEC– ALBsC,
MEC–MCHC, MEC–HBC, REC– 2DTBsC,
REC–SDE1C, REC–SDE2C, REC– ALBsC,
REC–MCHC, REC–HBC, MCHC

–HBC, HBC–

SDE1C, and HBC– SDE2C: Although the other pairs

show significant correlations, most of them have corre-

lation coefficients smaller than 0.6, which indicate

moderate to low associations. Specifically, only the

Figure 5. Comparison of the COVID-19 risk obtained with different methods for each infected person.
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pairs of MCHC
–SDE1C, MCHC

–SDE2C, SDE1C–
SDE2C, ABC–2DTBsC ABC–HBC, and MEC–REC

show strong associations (i.e., correlation coefficients

larger than 0.6). It is reasonable that these pairs have

strong associations because most of the sixty infected

persons had relatively circumscribed activity spaces

(e.g., they spent most of their time at home) before

they were confirmed as new COVID-19 cases under

the government’s nonpharmaceutical interventions

(e.g., work-from-home order). Note that the sixty

infected persons were free to conduct their daily activi-

ties before they were confirmed as new cases, even if

they might have been in close contact with infected

persons. The results show that the COVID-19 risk

measures obtained with different approaches are differ-

ent, indicating the existence of the UGCoP (i.e., dif-

ferent delineations of individual exposure space yield

different COVID-19 risk levels).

Comparisons of Mobility-Based and Residence-
Based COVID-19 Risk

In this subsection, we examine whether the assess-

ment of COVID-19 risk is affected by the NEAP by

comparing mobility-based and residence-based

COVID-19 risk due to exposure to the CHLs (i.e.,

MEC and REC). Table 4 presents the descriptive sta-

tistics of the MEC and REC measures of the infected

persons. As shown in Table 4, the mean value of

MEC is higher than that of REC, which indicates

that people’s COVID-19 risk can be underestimated

if their daily mobility is ignored. The pairwise differ-

ences between MEC and REC are significant.

Meanwhile, the standard deviation of MEC is smaller

than that of REC: Further, Figure 6A indicates that

the PDF of MEC is less deviated than that of REC,

indicating that people’s COVID-19 risk tends to

converge toward the average risk level when their

daily mobility is taken into account. Moreover,

Figure 6B shows that there is a positive linear rela-

tionship between REC (i.e., x-axis values) and values

obtained by subtracting the REC from the MEC (i.e.,

y-axis values). The results provide strong evidence

for the presence of the NEAP in the assessment of

COVID-19 risk.
In addition, the results suggest that the NEAP

might not affect the entire group of infected persons

in a similar way. Specifically, note that individuals

whose REC levels are very high or very low and who

move around considerably in their daily life are

exposed to risk environments that are considerably

different from those in their residential locations

(marked as A and B in Figure 6B). This means that

people who live in residential locations with many

high-risk venues might work or conduct their daily

activities at low-risk locations outside of their residen-

tial locations but could catch COVID-19 and trans-

mit it to others in these low-risk locations (i.e., A in

Figure 6B). On the other hand, people who live in

residential locations with few high-risk venues might

work or conduct their daily activities at high-risk

locations in areas outside of their residential locations

and get infected in these high-risk areas (i.e., B in

Figure 6B). The results further imply that ignoring

Table 4. Descriptive statistics of MEC and REC

M SD

MEC Mobility-based approach 3,633.15 3,723.94

REC Residence-based approach 3,065.90 4,192.10

Difference 2.46�a
Note: aPaired sample t test.
�Significant at the 5 percent level.

Table 3. The results of the bivariate Pearson correlation analysis between each pair of the assessed COVID-19
risk measures

2DTBsC MCHC HBC SDE1C SDE2C ABC MEC REC

2DTBsC — 0.57� 0.44� 0.53� 0.53� 0.64� 0.15 0.11

MCHC
— — 0.27 0.62� 0.62� 0.59� 0.13 0.10

HBC — — — 0.36 0.35 0.67� 0.11 0.12

SDE1C — — — — 0.94� 0.52� 0.07 0.16

SDE2C — — — — — 0.53� 0.11 0.12

ABC — — — — — — 0.13 0.16

MEC — — — — — — — 0.90�
REC — — — — — — — —

Note: �Significant at the 5 percent level.
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people’s daily mobility might lead to misleading

results in the assessment of COVID-19 risk.

Further, we conduct 3D geovisualizations of the

space–time trajectories of two infected persons who

have low REC and high ME
C
or high REC and low

MEC using ArcGIS Pro (Figure 7). Figure 7A shows

an individual who lives in a residential location with

a low density of high-risk venues (i.e., a suburban area

on Lantau Island) but she or he has to go to work and

conduct other daily activities in nonresidential locations

with a high density of high-risk venues (i.e., low REC

and high MEC). On the other hand, Figure 7B shows

an opposite scenario where an individual who lives in a

residential location with a high density of high-risk ven-

ues works and conducts other daily activities in nonresi-

dential locations with a low density of high-risk venues

(i.e., high REC and low MEC). These two cases corrob-

orate and help illustrate our findings concerning the

effects of the UGCoP and the NEAP in the assessment

of COVID-19 risk. The results of the preceding analysis

thus clearly indicate that the UGCoP and the NEAP

exist in ecological COVID-19 studies.

Association between CHL-Based and VHL-
Based Measures

In this subsection, we examine the associations

between CHL-based and VHL-based COVID-19 risk

using eight multivariate linear regression models. In

these models, the dependent variable is the CHL-

based COVID-19 risk measures, and the indepen-

dent variable is the VHL-based COVID-19 risk

measures (i.e., evaluating how venues-based risk

influences case-based risk). The models are con-

trolled for the age (a continuous variable) and

activity diversity (the number of different types of

activities conducted) of the sixty infected persons. A

total of eight models are estimated to examine the

associations between CHL-based and VHL-based

COVID-19 risk levels obtained with the mobility-

based approach, the residence-based approach, and six

activity space methods. The performance of these

models is compared using the Akaike’s information

criterion (AIC), the adjusted R2, and the correspond-

ing p value. Furthermore, the models are compared to

see whether a significant association exists between a

CHL-based measure and the corresponding VHL-

based measure. A higher significant association indi-

cates a more reliable COVID-19 risk assessment.
Table 5 shows the results of the regression models.

Table 5 shows that all models are statistically signifi-

cant with a p value <0.001. Among the models, the

most robust one is the mobility-based model, which

has the lowest AIC (81.94) and p value <0.001.

The model explains 79 percent of the variance in

people’s CHL-based COVID-19 risk. Meanwhile, the

least robust model is the one based on the ALBs

(AIC ¼ 156.85), which only explains 28 percent of

the variance.
The associations between the CHL-based and

VHL-based COVID-19 risk obtained by different

exposure-space methods are shown in Table 6. In all

models, VHL-based risk has a significant positive

association with CHL-based risk, which means that

people who conduct their daily activities in locations

with a higher density of VHLs also have a higher

CHL-based risk. The ME model, in particular, yields

the highest association between CHL-based and

VHL-based COVID-19 risk. Recall that a higher

association indicates a more reliable COVID-19 risk

Figure 6. Methods for identifying the neighborhood effect averaging problem in the assessment of COVID-19 risk: (A) Probability

density functions of REC (blue line) and MEC (red line). (B) A scatterplot with the x-axis values as the REC and the y-axis values

obtained by subtracting the MEC from the REC:
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assessment. Thus, the results suggest that using the

mobility-based approach to assess people’s COVID-

19 risk can generate more reliable results when

compared to other methods. Meanwhile, there is a

significant positive association between people’s

activity diversity and their COVID-19 risk assessed

based on the CHLs using the 2DTBs, MCH, and

ALBs models. This suggests that people who conduct

more diverse activities in their daily lives tend to

have a higher COVID-19 risk, probably due to their

higher probability of exposure to high-risk locations.

Finally, only in the 2DTBs model does the age of

people have a positive association with COVID-

19 risk.
These results indicate that using the mobility-

based approach to assess people’s COVID-19 risk

generates more reliable results when compared to

other methods. Thus, the inconsistent findings in

Figure 7. The space–time trajectories of the two different individuals exposed to different high-risk environments: (A) Low REC and

high MEC and (B) high REC and low MEC:
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previous studies might be partly due to ignoring peo-

ple’s daily mobility and its interactions with the
complex and dynamic COVID-19 risk environment.

Further, the results imply that taking into account
people’s daily mobility when measuring COVID-19
risk can help address the NEAP and mitigate

the UGCoP.

Discussion and Conclusion

This study used the activity data of sixty infected
persons to examine how the assessment of COVID-
19 risk might be affected by the UGCoP and the

NEAP. Three approaches (i.e., the mobility-based
approach, the residence-based approach, and the

activity space–based approach) were used to assess

people’s exposure based on CHLs and VHLs. By

comparing the CHL-based COVID-19 risk obtained

with different approaches, the results indicate that

the UGCoP exists in the assessment of COVID-19

risk. Further, by comparing the mobility-based and

residence-based COVID-19 risk, the NEAP was also

observed in the assessment of COVID-19 risk.

Finally, the highest association between the CHL-

based and VHL-based COVID-19 risk levels was

obtained by the mobility-based approach, which sug-

gests that using the mobility-based approach to assess

people’s COVID-19 risk generates more reliable

results when compared to those obtained by other

methods. The study thus contributes to the ecologi-

cal study of infectious diseases by showing how the

UGCoP and the NEAP might affect the assessment

of the risk of COVID-19 and other infec-

tious diseases.
The results of the study have important implica-

tions for COVID-19 studies and control measures.

First, ecological COVID-19 studies need to address

the uncertainties due to the UGCoP and the NEAP

by considering people’s mobility in their daily lives

because a small number of infected persons can lead

to a large wave of COVID-19 transmission (e.g., 80

percent of the local cases in Hong Kong can be

traced back to 19 percent of all infected persons

who are the superspreaders; Adam et al. 2020).

Further, ignoring people’s daily mobility and its

interactions with the complex and dynamic COVID-

19 risk environment can underestimate COVID-19

risk, which might lead to ineffective control

Table 6. The association between case-based high-risk locations–based and VHL-based COVID-19 risk
analyzed by the regression models for different methods of representing exposure space

Independent variables Model Coefficient Standard Model Coefficient Standard

Age 2DTBs 0.03� 0.11 MCH 0.01 0.09

Activity diversity 0.20� 0.11 0.31�� 0.10

VHL-based risk 0.53��� 0.14 0.53��� 0.10

Age HB 0.05 0.11 SDE1 �0.01 0.09

Activity diversity 0.14 0.11 0.03 0.10

VHL-based risk 0.48��� 0.12 0.72��� 0.10

Age SDE2 0.01 0.09 ALBs �0.03 0.11

Activity diversity 0.03 0.09 0.20� 0.11

VHL-based risk 0.74��� 0.09 0.49��� 0.11

Age ME 0.18 0.11 RE 0.18 0.12

Activity diversity �0.18 0.11 0.01 0.12

VHL-based risk 0.82��� 0.12 0.78��� 0.12

Note: VHL ¼ venues-based high-risk location.
�Significant at the 10 percent level.
��Significant at the 1 percent level.
���Significant at the 0.1 percent level.

Table 5. The results of the regression models for
examining the associations between case-based high-risk
locations–based measures and venues-based high-risk

locations–based measures

Model AIC Adjusted R2 p Value

2DTBs 150.11 0.35 0.000���
MCH 135.37 0.49 0.000���
HB 152.66 0.34 0.000���
SDE1 134.30 0.50 0.000���
SDE2 129.86 0.54 0.000���
ALBs 156.85 0.28 0.000���
ME 81.94 0.79 0.000���
RE 88.45 0.72 0.000���
Note: AIC¼Akaike’s information criterion.
��� Significant at the 0.1 percent level, or ��� p-value < 0.001.
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measures. Policymakers should thus be aware of the

effects of the NEAP on the assessment of COVID-

19 risk when formulating measures to control the

transmission of COVID-19. Because there is some

evidence that people with similar mobility patterns

tend to have similar levels of exposure to environ-

mental risks (e.g., S. Ma et al. 2021), future studies

on individual-level risk to infectious diseases could

use this association to tailor specific control meas-

ures to different social groups with distinctive mobil-

ity characteristics (e.g., office workers).
Second, examining people’s COVID-19 exposure

risk based on the NEAP revealed important mecha-

nisms that greatly enhance our understanding of the

possibilities for different groups of people to mitigate

their risk through mobility. Specifically, the NEAP

enabled us to identify specific social groups that do

not have an option to decide which trips to make or

to forego: (1) people with low income who live in

low-risk neighborhoods and have to work in loca-

tions with a high density of high-risk venues and (2)

people with low income who live in high-risk neigh-

borhoods but cannot reduce their COVID-19 expo-

sure risk (e.g., moving out of high-risk

neighborhoods). On the other hand, individuals who

have the option of deciding which trips to make or

to forego can limit their exposure to high-risk areas

(e.g., working from home or conducting daily activi-

ties in low-risk neighborhoods). Although previous

studies have observed these phenomena in China

(Kraemer et al. 2020), Hong Kong (Huang et al.

2020), the United States (Chang et al. 2021; Kim

and Kwan 2021c), the United Kingdom (Lee, Qian,

and Schwanen 2021), France (Pullano et al. 2020),

and Chile (Gozzi et al. 2021), examining them via

the NEAP enables us to not only identify the spe-

cific ways in which different social groups are

affected because of their different abilities for mobil-

ity change but also to highlight the advantaged or

disadvantaged situations of different social groups.
Third, the mobility- and activity-based perspective

of the study enables us to more readily identify vul-

nerable social groups and high-risk areas and behav-

iors. This knowledge in turn can help health

authorities to develop more targeted place-based and

area-specific intervention measures for effectively con-

trolling the spread of COVID-19 and future pandem-

ics (e.g., health authorities can advise people to avoid

visiting high-risk areas or undertaking high-risk activi-

ties and implement area-specific lockdowns and mass

testing). For instance, Jordan is a densely packed

neighborhood in Hong Kong and is known for the

city’s highest concentrations of “coffin homes” and

“cages” (i.e., apartments that are parceled out into

two or more smaller subunits; V. Wang and May

2021). The neighborhood witnessed 160 COVID-19

infected persons in the first two weeks of January

2021 out of about 1,100 cases citywide in the same

period. The Hong Kong government responded by

locking down 10,000 residents in Jordan for two days

to conduct mass testing to control the spread of

COVID-19 (V. Wang and May 2021). In this light,

policymakers can invest more resources to improve

the capacity for contact tracing, testing, and vaccina-

tion in neighborhoods where people might have a

low ability to reduce their COVID-19 exposure risk.
In addition to the empirical contribution and pol-

icy implications, the study aligns with a developing

line of research in geography and public health that

shifts the emphasis from residence-based assessment

of environmental exposures to mobility-based

dynamic assessment (which often involves the use of

real-time tracking and mobile sensing). This is a

highly promising, nascent area of research that has

tremendous potential to enhance our understanding

of a wide range of environmental exposures and

their health impacts. The study contributes to this

emerging area of research.

Although this study is significant because it is one

of the first studies that examine the UGCoP and

NEAP on the assessment of COVID-19 risk, it has

several limitations that should be addressed in future

research. First, due to data limitations, the activity

data of the infected persons are for an early stage of

the pandemic, which might not be able to capture

the detailed spatiotemporal variations of the pan-

demic under different nonpharmaceutical interven-

tions (Kan et al. 2021). For instance, the Hong Kong

government mandated the closing of certain social

gathering venues (e.g., bars) at the beginning of the

third wave (i.e., from July to September 2020) due to

the lessons learned from the first and second waves

(i.e., from 29 January to 14 April 2020). It did not

stop the third wave of the COVID-19 outbreak in

other social gathering venues, however (e.g., nursing

homes; Law, Leung, and Xu 2020). Thus, future stud-

ies should further examine how the NEAP affects the

assessment of COVID-19 risk under different non-

pharmaceutical interventions. Although certain char-

acteristics of the COVID-19 pandemic in Hong Kong
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might have changed after the second wave as a result

of different nonpharmaceutical interventions, weather,

and other factors that had changed over time, these

differences are unlikely to significantly affect the con-

clusion of the study: The UGCoP and the NEAP

exist in the assessment of COVID-19 exposure risk

(because the differences between residence-based

assessments and mobility-based or activity space–based

assessments will likely remain, although the levels of

exposure risk might be different).

Second, although this study used the Google

Place API to construct the space–time trajectories of

the infected persons, the constructed trajectories

might not be the actual ones (i.e., different travel

routes could be used). The results from earlier studies

on the food environment and air pollution exposure,

however, have identified the UGCoP and the NEAP

based on real-time GPS tracking data (J. Wang and

Kwan 2018; J. Ma et al. 2020). The results of these

studies are consistent with those in our study. Thus,

the methods used in this study based on public data

could still be used to further explore the UGCoP and

the NEAP in ecological COVID-19 studies and

research on other infectious diseases.

Finally, it should be noted that the NEAP might

lead to different conclusions concerning the experi-

ences of socially vulnerable groups in the pandemic.

For instance, improving mobility might mitigate the

effects of the NEAP and thus might reduce the air

pollution exposure for low-income people who live

in a residential location with a high level of air pol-

lution (X. Ma et al. 2020). People who live in a sub-

urban low-risk location with high mobility, however,

might experience significantly higher COVID-19

risk if they work in high-risk locations, as we dem-

onstrated earlier. Hence, it is important to conduct

careful analysis to understand the effects of the

NEAP on people’s exposure to COVID-19 risk and

other environmental factors (e.g., air pollution).
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