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A B S T R A C T   

An implicit assumption often made in research on the environmental determinants of health is that the re
lationships between environmental factors and their health effects are stable over space and time. This is the 
assumption of stationarity. The health impacts of environmental factors, however, may vary not only over space 
and time but also over the value ranges of the environmental factors under investigation. Few studies to date 
have examined how often the stationarity assumption is violated and when violated, to what extent findings 
might be misleading. Using selected studies as examples, this paper explores how the stationarity assumption can 
lead to misleading conclusions about health-environment relationships that may in turn have serious health 
consequences or policy implications. It encourages researchers to embrace nonstationarity and recognize its 
meaning because it helps direct our attention to the ignored factors or processes that may enhance our under
standing of the phenomena under investigation.   

1. Introduction 

An implicit assumption often made in research on the environmental 
determinants of health is that the relationships between environmental 
factors and their health effects are stable over space and time. This is the 
assumption of stationarity. As indicated by recent studies, however, the 
health impacts of environmental factors may vary not only over space 
and time but also over the value ranges of the environmental factors 
under investigation (Tran et al., 2019; Zhang et al., 2020). But few 
studies to date have examined how often the stationarity assumption is 
violated and when violated, to what extent findings might be 
misleading. As a result, how the stationarity assumption may have 
affected our understanding of health-environment relationships is far 
from clear to date. 

Further, the stationarity assumption may also influence what find
ings are considered valuable in the publication process. This can happen 
when authors, journal editors, and manuscript reviewers do not recog
nize the meaning and importance of non-stationarity. As a result, studies 
that did not observe global relationships that hold for entire study areas, 
study periods, or value ranges of environmental factors may be 
considered unsuitable for publication (despite observing local relation
ships for different parts of the study areas, study periods, or value ranges 
of environmental factors). Because of this tendency to ignore the sig
nificance and meaning of nonstationary local relationships and to 

recognize the importance of only global relationships (which is an 
attitudinal issue that may be called the stationarity bias), researchers may 
not seek to publish this kind of works, and even when attempted, editors 
and reviewers may tend to reject them as not valuable contributions. 
Over time, the absence of publications that observe only local re
lationships but not global relationships may lead to the false impression 
that environmental factors always operate globally. In this manner, the 
stationarity bias may lead to a publication bias (which is a statistical bias 
that can happen when manuscripts that observed global relationships 
have a much higher chance of being published than those that did not) 
(see Nieuwenhuis, 2016), although whether the bias is serious or can be 
observed is unclear because many studies may observe both global and 
local relationships at the same time and get published (when compared 
to those that only observed local relationships). 

However, ignoring the meaning and implications of nonstationarity 
could still seriously undermine our understanding of the health impacts 
of environmental factors (Kwan, 2018). It is thus crucial to understand 
what nonstationarity is and detect its existence in research on the 
environmental determinants of health because ignoring it may lead to 
misleading conclusions. This paper seeks to heighten the awareness of 
authors, journal editors, and manuscript reviewers of the tendency of 
not recognizing the meaning and importance of studies that observed 
only nonstationary relationships. It highlights the stationarity bias as an 
attitudinal issue (a lack of recognition). It focuses on describing three 
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types of nonstationarity that can be encountered in research on the 
health impacts of environmental factors using a limited number of 
selected studies as examples: spatial nonstationarity, temporal non
stationarity, and value-range nonstationarity. Further, the paper seeks 
to highlight how nonstationarity may confound research results and 
what implications they may have for effective health policy in
terventions. The primary purpose of the paper is to use the selected 
studies as examples to illustrate the potential impacts of the stationarity 
bias on our understanding of research findings and intervention mea
sures, not to provide an in-depth discussion of the studies, a systematic 
review, or a meta-analysis. Further, as mentioned above, how the sta
tionarity assumption may have affected our understanding of 
health-environment relationships is far from clear to date. The paper is 
thus an initial attempt to draw the attention of researchers, journal 
editors, and manuscript reviewers to the stationarity bias and its po
tential implications for the generation of reliable knowledge and inter
vention policies. The emphasis is more on increasing awareness than on 
proposing or describing methods for capturing and addressing non
stationarity (because, as described in this article, methods for this pur
pose already exist, especially for addressing spatial nonstationarity, and 
the problem is more the lack of awareness of the stationarity bias than a 
lack of methods). 

2. Spatial nonstationarity 

Past studies have observed three types of nonstationarity that can 
confound the results of studies on the environmental determinants of 
health: spatial nonstationarity, temporal nonstationarity (which is 
encountered only in longitudinal studies), and value-range non
stationarity (which occurs when the health impacts of environmental 
factors vary over the value ranges of the environmental factors under 
investigation). Spatial nonstationarity exists when the health- 
environment relationship being examined varies across geographic 
areas (Siordia et al., 2012). When spatial nonstationarity is present, 
model coefficients vary spatially, and the results of global models that do 
not take such spatial variations into account may be misleading 
(Brundson et al., 1996). An important reason for the existence of spatial 
nonstationary is that certain health-environment relationships are 
influenced or mediated by one or more spatially varying variables not 
included in the models. For example, the cooling effect of vegetation 
may vary across space because it is potentially influenced by factors that 
can significantly affect vegetation growth (e.g., climate or irrigation) but 
are not considered in the model. For instance, using geographically 
weighted regression (GWR), a study in New Jersey found that the as
sociation between racial minorities and toxic air releases varies over 
space because such association is mediated by high poverty rates, which 
vary from place to place (Mennis and Jordan, 2005). In this study, the 
adjusted R2 of the global regression models range from 0.25 to 0.33, 
while the local R2 or the GWR models range from 0.04 to 0.94, indi
cating that the GWR models capture a wider range of associations than 
the global models. The standardized regression coefficients for the 
variable of the percentage of black population for the global models 
range from − 0.028 to − 0.057, while those for the GWR models range 
from 0.066 to 0.136, indicating that only the local models found positive 
associations between higher percentages of black population and higher 
levels of toxic air releases (while the global models observed counter
intuitive negative relationships between black populations and toxic air 
releases). 

Another study observed that the effects of weather (temperature, 
wind speed, and precipitation) on people’s cycling trips for leisure and 
commuting vary across space in Rotterdam as a result of varying urban 
density in different areas (Helbich et al., 2014). This study compared the 
results obtained from global multivariate logistic regression (LR) models 
and two types of local models that take spatial nonstationarity into ac
count: autologistic regressions (ALRs) and geographically weighted logit 
models (GWLM). Using the corrected Akaike information criterion (AIC) 

to evaluate model performance, the study found that the local models 
better capture the associations between weather and people’s cycling 
behavior than the global models (where the AIC of the best-performing 
global model is 2339, while the AIC of the best-performing local model is 
1512). The paper concluded that the effects of weather on people’s 
cycling behaviors vary across space (e.g., between the more densely 
settled central areas of Rotterdam and the surrounding lower-density 
areas). Further, the results also reveal differences between leisure and 
commute trips, where leisure trips tend to be more sensitive to weather 
and have more noticeable spatial patterns. 

The patterns of spatial nonstationarity can be complex. For instance, 
past studies on the spatial nonstationarity in health-environment re
lationships yielded a remarkable observation: the health effects of an 
environmental factor can be positive in some areas but negative in 
others (e.g., Li and Kim, 2020; Su et al., 2012). For example, using a 
global ordinary least squares (OLS) regression model and a geographi
cally weighted regression (GWR) model, Siordia et al. (2012) found that 
although the global OLS model observed a positive association between 
diabetes and poverty in the U.S., the GWR model observed that the 
relationship between diabetes and poverty not only varies across 
geographic areas but also deviates from the “classical” global relation
ship: poverty is not always positively associated with diabetes, it fluc
tuates from negative to positive; in some areas, an increase in poverty is 
associated with a decrease in the prevalence of diabetes. In another 
study, Wang et al. (2018) investigated the effects of various environ
mental factors on people’s leisure-time physical inactivity in the U.S. 
using a global OSL model and two local spatial regression models: a 
spatial lag model (SLM) and a geographically weighted regression 
(GWR) model. Based on the Akaike information criterion (AIC), the 
study found that the two local models have better explanatory power 
than the OLS model: SLM (AIC = 14,745; pseudo R2 = 0.744), GWR 
(AIC = 13,415; R2 = 0.856), and OSL (AIC = 16,063; R2 = 0.608). It 
observed that the association between tree canopy coverage and peo
ple’s leisure-time physical inactivity in the U.S. has a complex pattern: 
positive in some counties, negative in some others, and no association in 
the remaining counties, depending on geographic location. These com
plex spatially nonstationary relationships can help focus researchers’ 
attention on the effects of environmental factors at different geographic 
areas or regions that are not included in their models. For example, as 
reported in Wang et al. (2018), it is mainly in western states like Nevada 
and Arizona that tree canopy coverage has negative associations with 
people’s leisure-time physical inactivity. This means that more tree 
canopy coverage tends to make people more active in these semiarid or 
desert areas where trees and green spaces are very limited, while trees 
and green spaces may not have the same (or as much) physical activity 
promoting effect in areas with less arid climates. 

Similarly, Huang et al. (2020) observed the same kind of complex 
patterns in the relationship between green spaces and COVID-19 
transmission risk in Hong Kong. The study examined the relationship 
between various built-environment factors (e.g., building density, green 
space density) and COVID-19 risk using global Poisson regression (GPR) 
models and geographically weighted Poisson regression (GWPR) 
models. It found spatially nonstationary relationships between the 
built-environment factors and COVID-19 risk. For instance, green space 
is negatively associated with COVID-19 risk in dense urban areas, while 
the relationship between green space and COVID-19 risk is positive in 
low-density suburban areas. Again, complex spatially nonstationary 
relationships like this may help focus researchers’ attention to other 
relevant factors that vary over geographic areas. In Hong Kong, for 
instance, the density of pubs, restaurants, and shopping malls is high in 
dense urban areas, where more green space may lower COVID-19 risk 
(perhaps through reducing the density of high-risk venues and the 
amount of risky human interactions). However, more green space in 
low-density suburban areas increases COVID-19 risk because the green 
spaces in low-density suburban areas in Hong Kong include many 
country parks that attracted a large number of people to undertake 

M.-P. Kwan                                                                                                                                                                                                                                      



Health and Place 70 (2021) 102609

3

outdoor activities (e.g., hiking or picnicking) during the lockdowns, 
which may increase human interactions and the potential contact with 
infected persons). 

Thus, even when a global health-environment relationship is not 
observed for the entire study area, it does not mean that important and 
meaningful local relationships do not exist for different parts of the 
study area (e.g., they may be positive in some areas, negative in others, 
and yet no relationships exist for the rest of the study area). Note that 
spatial nonstationarity can be a common issue in studies that cover large 
geographic areas (e.g., the U.S. or China) because geographic or envi
ronmental factors may vary considerably across large areas. For 
instance, Wang et al. (2018) observed that different climates in different 
regions of the U.S. influence the effects of tree canopy coverage on 
people’s leisure-time physical inactivity (e.g., tree canopy coverage re
duces people’s inactivity only in areas with semiarid and desert 
climates). 

3. Temporal nonstationarity 

The second type of nonstationarity is temporal nonstationarity, 
where the health effect of an environmental factor changes over time. A 
common form of temporal nonstationarity is the periodic changes (e.g., 
seasonal changes) in health-environment relationships over time. This 
kind of nonstationarity is often observed in the spread of infectious and 
vector-borne disease (e.g., influenza and dengue fever), whose spread is 
influenced by climatic factors with strong seasonality such as tempera
ture or rainfall (Fisman 2007; Ewing et al., 2016; Cazelles et al., 2018). 
Another form of temporal nonstationarity in health-environment re
lationships stems from social cycles such as school terms and religious 
holidays (e.g., Easter and Christmas) (Cazelles and Hales, 2006). Social 
cycles influence the health effects of environmental factors through 
changes in the patterns and intensity of human interactions over time. 
There are now methods for addressing this type of relatively regular and 
predictable temporal nonstationarity in time series data, such as 
removing the temporal trends by detrending, implementing seasonal 
adjustments, or using Bayesian methods (Cazelles and Hales, 2006). 

But other types of temporal nonstationarity are more difficult to 
address. One happens during pandemics such as COVID-19, as people’s 
behaviors change over time in response to changes in perceived infec
tion risk and government control measures (e.g., stay-at-home orders, 
travel restrictions, and quarantine requirements). As people travel less, 
conduct fewer out-of-home activities, and participate in fewer social 
gatherings, the influence of certain environmental factors (e.g., high-risk 
areas or venues) on disease transmission may decline (Xiong et al., 2020; 
Huang and Kwan, 2021; Kan et al., 2021). For instance, using longitu
dinal models and county-level data, a study on the COVID-19 pandemic 
in the U.S. observed that people’s mobility declined in the early stage of 
the pandemic (March–April 2020) in response to mobility restriction 
measures (Kim and Kwan, 2021). However, after this early stage, peo
ple’s mobility quickly bounced back to the usual levels, perhaps due to 
“quarantine fatigue” (people became tired of staying at home and thus 
resumed their normal travel despite continued mobility restrictions and 
the COVID-19 pandemic becoming more serious) (Kim and Kwan, 
2021). Similar patterns of changes in people’s mobility in response to 
government COVID-19 control measures were also observed in England, 
where mobility levels first declined drastically and then gradually 
returned to normal (Lee et al., 2021). 

Interestingly, a study of the COVID-19 pandemic in Hong Kong 
observed how changes in government control measures over time 
influenced the temporal distributions of different spatial clusters of 
COVID-19 cases (Kan et al., 2021). Using space-time scan statistics to 
identify the space-time clusters of COVID-19 cases, the study observed 
that the implementation of travel restrictions and quarantine re
quirements on travelers from Mainland China in early February 2020 led 
to a significant drop in the clusters of imported cases. As many overseas 
Hong Kong residents and students returned to Hong Kong since early 

March due to the deterioration of the pandemic in Europe and other 
regions of the world, the Hong Kong Government implemented a series 
of quarantine requirements on travelers from many foreign countries (e. 
g., Italy, France, Germany, and Japan). Further, seeing that the number 
of imported cases increased sharply from mid-March despite the quar
antine requirements on all travelers arriving at Hong Kong, the gov
ernment implemented criminal prosecution and compulsory confined 
quarantine on quarantine breakers, banned any group gatherings of 
more than 4 persons in any public place, and required all karaoke 
lounges, nightclubs, and mahjong venues to be temporally closed. These 
control measures led to a steady decline in the clusters of local cases in 
April 2020. 

As these two examples indicate, the mutual influences among 
COVID-19 risk, people’s behaviors and government interventions 
change over time in a highly complex manner. Ignoring this kind of 
temporal nonstationarity arising from the changes in people’s behaviors 
or government intervention measures may lead to misleading conclu
sions about the influences of various environmental factors on the 
spread of COVID-19. It may also lead to ineffective intervention policies, 
because restricting people’s mobility to control the pandemic may be 
effective only for a short period in the early stage of the pandemic, as 
Kim and Kwan (2021) concluded. 

Another type of temporal nonstationarity that is difficult to address 
arises from major changes at different stages of people’s life courses. 
Here, the health effects of environmental factors may change over time 
due to changes in people’s residential neighborhoods, workplaces, and 
locations of daily activities (Pearce et al., 2016). As a result of these 
changes, people may have different daily mobility patterns or socio
economic environments that can drastically change their exposures to 
and the health impacts of different environmental factors (Kwan, 2012). 
While longitudinal and lifecourse approaches can take into account this 
kind of temporal nonstationarity to a certain extent, the detailed data (e. 
g., residential history and daily mobility patterns) needed to address it 
may not be available or may have serious limitations (Freeman et al., 
2020; Jia et al., 2020). 

4. Value-range nonstationarity 

The third type of nonstationarity is value-range nonstationarity, 
where the relationship between an environmental factor and its health 
effects changes, sometimes considerably, over the observed value range 
of the environmental factor. This kind of nonstationarity may take 
various forms, one of which occurs when a health-environment rela
tionship changes after the environmental factor reaches a certain value 
(i.e., the threshold). This phenomenon is referred to as the threshold 
effect (Tran et al., 2019; Zhang et al., 2020). There are two kinds of 
thresholds, depending on where they occur along the value range of an 
environmental factor. Some environmental factors have to reach certain 
minimum levels in order to have any health impact. For others, a given 
change in their values after exceeding the threshold may lead to no 
further change or a dramatic change in the direction or size of its health 
effects; the former case is the result of reaching a maximal response 
beyond which further increase in the exposure to the environmental 
factor will have no additional health impact. 

The patterns of value-range nonstationarity can also be complex: the 
health effects of an environmental factor may be positive or negative or 
significant or not significant for different value ranges. For instance, 
Zhang et al. (2020) examined the effects of four bus 
micro-environmental factors on passengers’ momentary mood: noise, 
temperature, relative humidity, and passenger load (using 10-25 sepa
rate linear models to cover the entire value ranges). The study observed 
nonstationary health-environment relationships that vary in a complex 
manner. For example, the effect of noise on passengers’ momentary 
mood is not significant in the first 11 models that cover the noise range 
of 54–78 dB. However, the effect becomes negative, significant, and 
stronger as the noise level increases beyond the 12th model (65–79 dB). 
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(Note that the separate models used in the study cover slightly over
lapping ranges of the environmental factors using moving windows.) 

In the same study, the changes in the relationship between relative 
humidity and passengers’ momentary mood are even more dramatic 
(Zhang et al., 2020). Relative humidity (RH) has a positive effect on 
passengers’ momentary mood from the 11th to the 17th models (RH =
41–62%). For the 18th and 19th models (RH = 48–64%), the relation
ship becomes very weak and insignificant. For the 20th and 21st models 
(RH = 50–66%), the relationship turns significant again but becomes 
negative. Thus, the relationship between relative humidity and pas
sengers’ momentary mood is first significant and positive, then insig
nificant, and finally significant and negative. 

As the study shows, the patterns of value-range nonstationarity can 
be complex. The health effect of an environmental factor can be positive 
or negative and can be significant or not significant over different value 
ranges of the environmental factor. Thus, because of value-range non
stationarity, even when a health-environment relationship is not 
observed globally (i.e., for the entire value range of the environment 
factor), it does not mean that significant and meaningful relationships 
do not exist locally for different sections of the value range. These 
complex patterns in the health effects of environmental factors cannot 
be detected using global linear models or non-threshold models. But 
even when they can be addressed with threshold or nonlinear models (e. 
g., Zhao et al., 2019; Zhang et al., 2021), the complex patterns of 
value-range nonstationarity still need to be deciphered carefully in order 
to obtain a nuanced understanding of the health-environment relation
ship in question (i.e., why the health-environment relationship changes 
in a particular way, and what factors explain such changes). 

5. Concluding remarks 

When nonstationary health-environment relationships exist, 
research findings at one geographic location, time point or value range 
cannot be generalized globally, and as a result, it is often impossible to 
make simple statements that summarize the complex nonstationary re
lationships observed. Authors, editors, and reviewers thus need to 
refrain from treating simple global statements about health- 
environment relationships as the sole indicator of the importance of a 
paper’s contribution. Nonstationary associations draw our attention to 
factors and processes that affect health-environment relationships but 
were not included in the analysis (note that some of these factors, like 
culture, may not be captured by any straightforward measures). We 
need to embrace nonstationarity, consider it valuable, and realize its 
importance because it helps direct our attention to the ignored factors or 
processes that may enhance our understanding of the phenomena under 
investigation. More importantly, the problem is often not the lack of 
methods for taking nonstationarity into account (as indicated by the 
discussion in the last three sections) but the lack of awareness of the 
importance and meaning of nonstationarity that leads to a disregard of 
the value of studies that did not observe global health-environment re
lationships, despite observing crucial local relationships. 

The stationarity bias in research on the environmental determinants 
of health is an attitudinal issue resulting from ignoring the meaning and 
importance of spatial, temporal, or value-range nonstationarity. The 
stationarity assumption presumes that only global health-environment 
relationships for entire study areas, study periods, and value ranges of 
environmental factors are important. But it ignores the existence and 
importance of local relationships for parts of the study areas, study pe
riods, and value ranges of environmental factors. It maintains that 
studies that did not observe global relationships have no meaningful 
findings. 

The stationarity bias can lead to misleading findings of health- 
environment relationships that may in turn have serious health conse
quences or policy implications. Because few, if any, studies have 
examined this issue to date, it can only be explored here with some 
examples. For instance, in a study of the potential impact of an urban 

heat island on thermally sensitive populations (i.e., people with ill- 
health and older adults) in Taiwan, Su et al. (2012) used geographi
cally weighted regression (GWR) to capture the spatial nonstationarity 
of the relationships between several land cover types (built-up area, 
paddy field, and other vegetation) and the surface temperature in Tao 
Yuan, Taiwan. The study found significant spatial nonstationarity in 
these relationships and the strength of these relationships was markedly 
higher in the GWR models than those in the global models (the R2 values 
for the global models range from 0.186 to 0.578, while the R2 values for 
the GWR models range from 0.607 to 0.718). The urban heat island 
estimated by the GWR models was 3.17 ◦C while it was 2.63 ◦C as 
estimated by the global models. These results indicate that using the 
global models and ignoring spatial nonstationarity could lead to an 
underestimation of the urban heat island, which may in turn lead to a 
failure to recognize and adequately address the health risks of the 
thermally sensitive populations. Further, the study by Wang et al. (2018) 
in the U.S. observed negative associations between tree canopy coverage 
and people’s leisure-time physical inactivity only in the semiarid and 
desert regions of the country, while tree canopy coverage has a positive 
association with people’s leisure-time physical inactivity in 6% of U.S. 
counties, and there is no association in 60% of the counties. This means 
that increasing tree canopy coverage to reduce people’s physical inac
tivity is likely to be effective only in the semiarid and desert regions of 
the country, and in 60% of the counties in the country, increasing tree 
canopy coverage is unlikely to have any influence on people physical 
inactivity. Thus, a policy that is effective in reducing people’s physical 
inactivity in some regions may not be effective in others. The nonsta
tionary associations between environmental variables and leisure-time 
physical inactivity observed in Wang et al. (2018) can help local gov
ernment to develop location-specific interventions to encourage people 
to undertake more physical activity in different geographic areas. 

Further, ignoring the temporal nonstationarity in people’s response 
to government intervention measures may lead to the ineffective control 
of the spread of pandemics (e.g., restricting people’s mobility to control 
pandemics may be effective only for a short period). Finally, the adverse 
health impacts of an environmental factor (e.g., temperature or noise 
level) may increase dramatically beyond the threshold level, and health 
authorities need to be aware of this kind of value-range nonstationarity 
and take adequate preventive measures. It is thus crucial for researchers 
and governments to recognize and avoid the stationarity bias, which 
may hinder our understanding of complex health-environment re
lationships and undermine the effectiveness of health intervention 
measures. 
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